
01net - Website analysis
Nicolas van de Walle

Dec 16, 2018

Abstract—This paper contains an analysis of the website
01net.com. It was conducted as part of the course of com-
puter networks given by Pr. Olivier Bonaventure at Universite
Catholique de Louvain.

I. INTRODUCTION

01net.com is a french media website specialized in high-
tech and new technologies. It is owned by the media group
NextRadioTV [1] and is, according to Alexa.com [2], the 107th

most visited website in France.
This paper will analyze this site regarding four different

aspects:

• the Domain Name System (DNS) and the Nameservers
• the HyperText Transfer Protocol (HTTP)
• the Transport Layer Security (TLS)
• the Transmission Control Protocol (TCP)

In order to perform this analysis, I first decided to go on
https://01net.com. The first thing I discovered is the fact
that we are automatically redirected to https://www.01net.com.
That’s why, in this paper, I will focus on this www subdomain.
Note : The reasons of that redirection will be explained in this
report

II. DNS

When performing the dig www.01net.com command
from the UCLouvain computer on Dec. 4, 2018, we get
the following results (Fig. 1) which we will interpret in the
subsections below.

Fig. 1. dig www.01net.com command result (UCLouvain - Dec. 4, 2018)

A. Aliases and Records

The first line of the answer shows us that when
we request www.01net.com, an alias is used (CNAME
= d5w2uqtmtwurf.cloudfront.net.) and this one
points to several IPv4 adresses which all have the same /24
IPv4 prefix (54.230.129.[...]).

When we try to get some more information about those
IP’s and prefix with the website otx.alienvault.com [3], we can
see that the 54.230.0.0/16 prefix is owned by AS16509
Amazon.com, Inc. This is our first clue that www.01net.com
is hosted by Amazon Web Services (AWS) [4]. The cloud-
front.net domain used as CNAME also gives us that informa-
tion as cloudfront, as said on the AWS official website [5], is
a Content Delivery Network owned by Amazon.

This CDN also explains why we don’t get the same IP
addresses depending on where the request is coming from. At
the same time, using the Google DNS resolver (8.8.8.8)
[6], we get different results from Arlon and Louvain-la-Neuve
(54.192.13.120 6= 54.230.95.250 for example).

B. Nameservers

The nameservers used by www.01net.com are also a clue
that 01net uses Amazon Web Services. In fact, the cloudfront
CNAME they use has the following nameservers :

• ns-568.awsdns-07.net.
• ns-1655.awsdns-14.co.uk.
• ns-6.awsdns-00.com.
• ns-1160.awsdns-17.org.

Those addresses all point to an AWS nameserver’s domain
+ subdomain (ns-XX.awsdns-YY.EXT.) where XX cor-
responds to the nameserver’s number on the YY domain with
an EXT ∈ {com, co.uk, net, org}.

As we can see on the figure 1 in the “ADDITIONAL
SECTION“, all those nameservers can be reached via both
IPv4 and IPv6 addresses which respectively belong to the
prefixes 205.251.0.0/16 and 2600:9000::/32

C. Time to live

The first Time To Live we will talk about is the one of the
CNAME (d5w2uqtmtwurf.cloudfront.net) and the A records
that are related to it. Its value is 60 seconds. The second one,
the one of the NS records corresponding to the CNAME has
a value of 21.600 seconds (6 hours). Finally, the IP addresses
corresponding to those nameservers also have a TTL of 6
hours.

Let’s now explain why those TTL are so different. The
biggest ones, 6 hours, are because the nameserver’s addresses

change very rarely as the resolver (AWS in this case) config-
ures the servers and their addresses are set once. The CNAME
can also use those nameservers for a long time as they should
not change very often. The A records of the CNAME have a
very small TTL (1 minute) because requests are coming from
many users and the best server to reach, for a single user,
might easily change over time (congestion, load...).

D. Extra records

We can also find some other records such as TXT or SOA.
• TXT ones are used to store some text data. According

to whois.com [7], 01net.com has 2 TXT records which
contains some domain verification for Facebook and
Google. They both have a TTL of 300 seconds.

• SOA records are used to control zone transfers and
contains some information about the DNS administrator
and authority (TTL = 60 seconds).

III. HTTP AND HTTPS

In this section, unless it is specified, HTTP will refer
to HTTP and HTTPS. Note: HTTP(S) stands for HyperText
Transfer Protocol (Secure).

A. Request and Response Headers

As said in the introduction, when we are trying to
reach http://01net.com, we are automatically redirected to
https://www.01net.com. The way it works can be explained
with the HTTP headers.

First, the client (Google Chrome BETA) sends an
HTTP/1.1 request to the server with, among others, the
upgrade-insecure-request header which is set to 1.
It tells to the server that, as explained on the W3C official
website [9], the server should redirect the client to the HTTPS
version of the website if available.

When the server intercepts the request, it gets the head-
ers and generates an HTTP/1.1 response which contains the
header Location set to https://www.01net.com and
a Status code with the value 301. The www subdomain
has been added by the programmers in the website’s code. The
HTTPS can as well have been added by the programmer or in
the server’s NGINX configuration.

The client gets the HTTP/1.1 response, is redirected to
https://www.01net.com and then tries to reach this
URL by sending an HTTP/2 request which is secured with
TLS (explained in section IV).

Finally, the server responds with a 200 Status code and the
source code of the page stored in the body.

Every HTTPS request has been established over the port
443 of the server while the non-secured initial request was
made using the port 80.

A request/response can also contain many other standard
headers such as: user-agent, accept, referer,
accept-encoding, accept-language... in the re-
quest and status, content-type, date, server,
last-modified, e-type, vary, via... in the re-
sponse.

As 01net.com uses the HTTP/2 version of the protocol, they
also use the “pseudo-header“ field which, in this case, contains
the following ones: :method, :authority, :scheme
and :path

Non-standards headers like x-cache and x-amz-cf-id
are also used in the responses.

• x-cache is used by many CDN to specify whether the
request was served by the origin or a proxy of the CDN.

• x-amz-cf-id is a non-standard header added by Ama-
zon Web Services to “identify the request“ [10] when it
is sent from the cloudfront to the origin server. It is then
set into the response the client gets.

B. Resources types

When we get a website source code, it often
contains many references to scripts, stylesheets,
images, fonts etc. Those are requested from many
other websites such as: static.bfmtv.com,
img.bfmtv.com, www.google-analytics.com,
dmp.theadex.com.... The following figure (2) shows
the distribution of those data in term of size.

Fig. 2. Resources distribution by size (Arlon Dec. 9, 2018)

As we can see, the Javascript, CSS, fonts and images
resources represent more than 3.5MB of data (compared to
the 114.1 kB of the page itself). That is why browsers keep
them in cache so they don’t need to reload them again.

When we look deeper into the source code, we can ob-
serve that some very used libraries like JQuery [11] or CSS
frameworks like Twitter Bootstrap [12] are loaded from the
01net CDN (Amazon) and not from the Jquery or Bootstrap
CDN. That means that, for example, if an user already has the
JQuery code (requested from the JQuery CDN) in cache, he
will have to download it again from 01net. That’s of course
the same for the Twitter bootstrap or any other widely used
library. Loading them from the origin CDN could improve the
loading speed of the website.

C. Cookies and Session variables

Navigating on the 01net.com website implies getting a lot
of cookies of many different types stored on our computer.
Those cookies can as well be set by 01net itself but they can
also be set by other websites which are included (via IFrames
or JS scripts) on the 01net website.

In order to analyze the cookies which are saved when
loading the page, I chose to access the website following 2
different scenarios:

1) Regular: In this scenario, I have already visited the
website with the same browser several times with an
advertising blocker (AdBlock [13]). The cookies and
javascript are authorized in the browser’s settings.

2) Incognito: In this scenario, I am visiting the website
using the “Incognito mode“ of Chrome BETA. This
mode disables all the extensions (AdBlock is then also
disabled) and there are no cookies before the first
request. The cookies and javascript are authorized in the
browser’s settings.

Before requesting the website, there are already a
lot of cookies in the “regular“ scenario. Here are some
examples we can find: Locale, ADSENSE, CONSENT,
TCPID, TestIfCookieP, bm_last_load_status,
pubconsent, euconsent, gdprconsent,
publica_session_id, _ga etc...

When the request is done, in the “regular“ scenario, there is
no significant difference in term of amount and names of the
cookies. On the other hand, in the “incognito“ scenario, most
of the cookies that existed in the “regular“ mode have been
created and a lot of new ones such as _fbp, uid, ad-id,
ad-privacy, adtrc, sasd... have also been set.

Let’s now talk about the role of those cookies. As their
name has been set by the developers, they do not always mean
something and are hard to understand. Hopefully, with some
experience and deduction, we can try to explain their usage
by looking at their names, values or domain.

In the incognito mode, most of the “new“ cookies are related
to advertising. They are used to track the user. When we
navigate on the web, as other websites also include IFrames or
JS scripts of advertising services, we send those cookies back
and the advertisers know we went on that specific website.

Many cookies are also related to the user’s consent. In
fact, since the General Data Protection Regulation (GDPR)
[14] came into force, websites are required to ask for people
consent in order to set tracking, marketing etc. cookies. Those
agreements are the stored as cookies...

Some other cookies just store the user’s locale or the session
id (required in order to store session variables).

Session variables are not really cookies. They consist in
variables that store a value and that are deleted when the user
closes his browser. Cookies, them, are deleted when the expire.

IV. TRANSPORT LAYER SECURITY

In order to securely communicate with its clients, 01net
exchanges information using the version 1.2 of the Transport
Layer Security (TLSv1.2) protocol. This protocol consists in
a Certificate delivered by a third party which allows the client
to be sure that the server he is contacting is effectively the one
he is trying to reach. It also permits to encrypt and decrypt
the exchanged data.

As said before, when we try to access
http://www.01net.com, we are redirected by the server

to https://www.01net.com. In fact, even if 01net.com has
disabled the HTTP Strict Transport Security
which only authorizes a client to reach the website via
HTTPS, they redirect the client to the secure version of the
website.

A. Certificate

The certificate I was talking about earlier has been issued by
GlobalSign Organization NV-SA to NEXT RADIO
TV. It can be used to communicate with the domain and every
subdomain of 01net.com.

On December 13, 2018, the certificate was valid until
February 12, 2019 and the signature algorithm that was used
is PKCS #1 SHA-256 With RSA Encryption. Let’s
now decrypt what it means.

• PKCS #1 corresponds to Public-Key Cryptography Stan-
dards [15]. It provides specifications to implement the
RSA algorithm.

• SHA-256 is an hashing algorithm (irreversible) which
is deterministic and gives a 256 bit output which corre-
sponds to the hash of the input.

• RSA is a system which relies on public-private key pair.
The public key is shared and used to encrypt messages
by anyone. The private key is kept secret and is the only
way to decode the encrypted message.

In order to be able to communicate, the certificate must be
trusted by both parties (server and client). According to my
tests using different browsers (Microsoft EDGE 44, Google
Chrome BETA 65, Mozilla Firefox Developer 65 and Internet
Explorer 11) and the results returned by SSLLABS.com [16],
the issuer (Globalsign) is trusted by all browsers.

It doesn’t mean the handshake will work with all browsers.
As said on SSLLabs, “This site works only in browsers with
SNI support“. SNI corresponds to Server Name Indication. It
is an extension to the TLS protocol which enables the client
client to send the domain name as part of the TLS negotiation.
The connection does not only rely on the IP address but also
on the virtual domain. As said before, some (old) browsers do
not support that extension and thus are not able achieve the
TLS handshake.

B. TLSv1.2 protocol details

Let’s now suppose that an attacker has intercepted the
encrypted data and, afterwards, has also been able to find the
secret key to decode those data. As we can once again see
on SSLLabs, forward secrecy is enabled on 01net. That
means that the attacker will be able to decode the data that
will be sent in the future but he won’t be able to decode the
one that was sent before he got the key.

Another interesting security feature is the Downgrade
attack prevention. As mentioned on the Internet En-
gineering Task Force website [17], the aim is to pre-
vent malicious users from using a lower version of the
security protocol to take advantage of vulnerabilities. On
01net.com, the protocol takes care of preventing this attacks

https://www.01net.com

as TLS_FALLBACK_SCSV (downgrade attack prevention) is
supported.

In order to be 100% safe to navigate on, all the domain
names that are accessed by www.01net.com are accessed using
HTTPS so that everything is encrypted end-to-end.

V. TRANSMISSION CONTROL PROTOCOL

In order to analyze the Transmission Control Protocol (TCP)
for the 01net.com website, I decided to analyze the TCP
segments sent and received by a Windows 10 computer and
an Android smartphone. Both were using Google Chrome
BETA to reach the website. The packets were collected by the
tPacketCapture App [18] on Android and then analyzed using
Wireshark [19]. On windows, both steps have been done using
Wireshark.

A. Parallel connections

Before requesting the 01net website, I looked up the ad-
dresses answered by the DNS in order to know which one the
browser could request.

• Computer : I found 2 of the 4 addresses that were used
in parallel to request the site (54.230.129.215 and
54.230.129.5).

• Smartphone : The 4 addresses returned by the DNS were
used (52.85.224.{83, 87, 92, 170}).

This difference might come from the fact that phones are
known to have a slower internet connection and thus, the
browser establishes more TCP connections to reduce conges-
tion and have more path to get the information.

B. Starting the connection

During the three-way handshake, the client and the server
exchange specific segments (SYN, SYN-ACK, ACK) in order
to define how they are going to use the protocol.

First, they each send their window size. It says how much
data can be transmitted before receiving an acknowledgment.
On my smartphone, the window has a size of 65.535 just
like the server’s one. On the other hand, on my computer, the
window size is 17.520 and the server communicates a window
size of 29.200.

The following options have the same negotiated value using
the computer or the phone:

• Maximum segment size (MSS): 1452 Bytes. It represents
the maximum size of the carried payload. Actually, the
client sends a MSS of 1460 and the server replies with
1452.

• Window Scale: 8. That means that the calculated window
size equals 28 = 256 times the window size.

• Selective acknowledgment: Permitted. When a packet is
lost, we acknowledge the next ones with its sequence
number but tell the sender which packets were received
using the left edge and right edge of the interval.

Regarding the timestamp, there is a negotiation of that
option when using chrome BETA for Android but not on
Windows 10. It communicates the client’s initial timestamp
value.

C. Round Trip Time and packets’ path
In order to get the response from the server, the packets

need to travel to that server. That operation may take some
time. My measurements made using the ping, traceroute
and Wireshark showed an RTT between 25 and 38 ms. This
value has been computed from Arlon, the path followed by
the packets is shown on figure 3. This small amount of time
comes from the fact that we are requesting the optimal server
to handle our request thanks to the CDN.

Fig. 3. Path followed by the packets from Arlon (Dec. 15, 2018)

D. Connection release
Since the time when the browser started the connection,

this TCP connection remains open for 120 seconds before
the browser sends a FIN packet to close the connection. The
connection is then ended gracefully. The server does not close
the connection itself. If I manually close the brower, a RST
packet is sent and that is the only moment the connection is
closed ungracefully.

VI. CONCLUSION

During this analysis of 01net.com, we have discovered they
were using Amazon Web Services to host their website. This
assumption has been confirmed by different elements: the
amazon nameservers, the usage of cloudfront, the specific
HTTP headers, the IPs etc.

On the HTTP side, I found out that some resources were
hosted on their CDN as it would be more efficient to use the
origin CDN.

I also discovered that reaching the website using my com-
puter or my phone using the same browser (Google Chrome
BETA) does not have the same effect in term of TCP con-
nection. In fact, different amount of TCP connections were
initialized on the different devices.

It has been impossible for me to analyze everything and
to say everything that could be said using 4 pages. I could
have discussed the expiring date of the cache, detailed the
impact of the advertisers on the website, explained how a CDN
works etc. Hopefully, we already have a global view with some
details of the analysis of the 01net.com website.

REFERENCES

[1] Wikipedia.com. 2018. “01net (site web)“. [ONLINE] Available at:
https://fr.wikipedia.org/wiki/01net (site web). [Accessed on December
4, 2018].

[2] Alexa.com. 2018. “01net.com Traffic, Demographics and Competitors“
- Alexa. [ONLINE] Available at: https://alexa.com/siteinfo/01net.com.
[Accessed on December 4, 2018].

[3] otx.alienvault.com. 2018. “AlienVault - Open Threat Exchange“. [ON-
LINE] Available at: https://otx.alienvault.com/indicator/ip/54.230.129.
59. [Accessed on December 9, 2018].

[4] Aws.amazon.com. 2018. “Amazon Web Services (AWS) - Cloud Com-
puting Services“. [ONLINE] Available at: https://aws.amazon.com/.
[Accessed on December 5, 2018].

[5] Aws.amazon.com/cloudfront/. 2018. “Content Delivery Network (CDN)
— Low Latency, High Transfer Speeds, Video Streaming — Ama-
zon CloudFront“. [ONLINE] Available at: https://aws.amazon.com/
cloudfront/. [Accessed on December 9, 2018].

[6] Developers.google.com. 2018. “Public DNS — Google Develop-
ers“. [ONLINE] Available at: https://developers.google.com/speed/
public-dns/. [Accessed on December 9, 2018].

[7] Whois.com. 2018. “Whois.com - Domain Names & Identity for Every-
one“. [ONLINE] Available at: https://dig.whois.com.au/dig/www.01net.
com. [Accessed on December 9, 2018].

[8] Site24x7.com. 2018. “Analyze webpages, improve web site perfor-
mance: Site24x7 Tools“. [ONLINE] Available at: https://www.site24x7.
com/web-page-analyzer.html. [Accessed on December 9, 2018].

[9] W3.org. 2018. “Upgrade Insecure Requests“. [ON-
LINE] Available at: https://www.w3.org/TR/2015/
CR-upgrade-insecure-requests-20151008/. [Accessed on December 10,
2018].

[10] Docs.aws.amazon.com. 2018. “Request and Response Behavior
for Custom Origins - Amazon CloudFront“. [ONLINE] Available
at: https://docs.aws.amazon.com/AmazonCloudFront/latest/
DeveloperGuide/RequestAndResponseBehaviorCustomOrigin.html.
[Accessed on December 10, 2018].

[11] Jquery.com. 2018. “Bootstrap The most popular HTML, CSS, and JS
library in the world.“. [ONLINE] Available at: https://getbootstrap.com/.
[Accessed on December 13, 2018].

[12] Getbootstrap.com. 2018. “JQuery“. [ONLINE] Available at: https://
jquery.com/. [Accessed on December 10, 2018].

[13] Getadblock.com. 2018. “Surf the web without annoying pop ups and
ads¡‘. [ONLINE] Available at: https://getadblock.com/. [Accessed on
December 10, 2018].

[14] Eugdpr.org. 2018. “EUGDPR Information Portal“. [ONLINE] Available
at: https://eugdpr.org/. [Accessed on December 10, 2018].

[15] Wikipedia.org. 2018. “PKCS 1 - Wikipedia“. [ONLINE] Available
at: https://en.wikipedia.org/wiki/PKCS 1. [Accessed on December 13,
2018].

[16] SSLLabs.com. 2018. “SSL Server Test: www.01net.com (Powered by
Qualys SSL Labs)“. [ONLINE] Available at: https://www.ssllabs.com/
ssltest/analyze.html?d=www.01net.com&s=13.35.125.11. [Accessed on
December 13, 2018].

[17] IETF.org. 2018. “RFC 7507 - TLS Fallback Signaling Cipher Suite Value
(SCSV) for Preventing Protocol Downgrade Attacks“. [ONLINE] Avail-
able at: https://datatracker.ietf.org/doc/rfc7507/. [Accessed on December
13, 2018].

[18] Taosoftware Co.,Ltd. 2018. “tPacketCapture version 2.0.1“ [Android
Application] Available at: https://play.google.com/store/apps/details?id=
jp.co.taosoftware.android.packetcapture. [Downloaded on December 15,
2018].

[19] Wireshark.org. 2018. “Wireshark Go Deep.“. [ONLINE] Available at:
https://www.wireshark.org/. [Accessed on December 15, 2018].

https://fr.wikipedia.org/wiki/01net_(site_web)
https://alexa.com/siteinfo/01net.com
https://otx.alienvault.com/indicator/ip/54.230.129.59
https://otx.alienvault.com/indicator/ip/54.230.129.59
https://aws.amazon.com/
https://aws.amazon.com/cloudfront/
https://aws.amazon.com/cloudfront/
https://developers.google.com/speed/public-dns/
https://developers.google.com/speed/public-dns/
https://dig.whois.com.au/dig/www.01net.com
https://dig.whois.com.au/dig/www.01net.com
https://www.site24x7.com/web-page-analyzer.html
https://www.site24x7.com/web-page-analyzer.html
https://www.w3.org/TR/2015/CR-upgrade-insecure-requests-20151008/
https://www.w3.org/TR/2015/CR-upgrade-insecure-requests-20151008/
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/RequestAndResponseBehaviorCustomOrigin.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/RequestAndResponseBehaviorCustomOrigin.html
https://getbootstrap.com/
https://jquery.com/
https://jquery.com/
https://getadblock.com/
https://eugdpr.org/
https://en.wikipedia.org/wiki/PKCS_1
https://www.ssllabs.com/ssltest/analyze.html?d=www.01net.com&s=13.35.125.11
https://www.ssllabs.com/ssltest/analyze.html?d=www.01net.com&s=13.35.125.11
https://datatracker.ietf.org/doc/rfc7507/
https://play.google.com/store/apps/details?id=jp.co.taosoftware.android.packetcapture
https://play.google.com/store/apps/details?id=jp.co.taosoftware.android.packetcapture
https://www.wireshark.org/

	Introduction
	DNS
	Aliases and Records
	Nameservers
	Time to live
	Extra records

	HTTP and HTTPS
	Request and Response Headers
	Resources types
	Cookies and Session variables

	Transport Layer Security
	Certificate
	TLSv1.2 protocol details

	Transmission Control Protocol
	Parallel connections
	Starting the connection
	Round Trip Time and packets' path
	Connection release

	Conclusion
	References

